
Lamb mode stresses as means of identifying voids
in the adhesive zone of bilaminates

R.Y. Vasudeva *, G. Sudheer

Department of Applied Mathematics, Andhra University, Visakhapatnam 530 003, India

Received 6 July 2001

Abstract

Lamb wave technique has emerged as a reliable tool in the nondestructive testing of laminated plates. Some current

studies to identify the specific Lamb modes that can characterize different kinds of defects in layered plates using Lamb

waves have shown that the modes for which high stresses and low displacements occur in the interface indicate the

presence of defects like pores or voids whereas the modes for which the displacements are high show the presence of

harder inclusions. In this context this paper tests an earlier analytical model developed to facilitate NDT of porosity in

the adhesive zone of bilaminates.

The model tested treats the pore infested thin adhesive region as a linear elastic material with voids (LEMV). For

certain parametric values of the LEMV adhesive layer the influence of these voids on dispersion and stresses carried by

the first few Lamb modes in glass/glue/glass (G/g/G) bilaminate is traced in the range 0–10 MHz. The frequency–phase

velocity points experimentally obtained by Kundu and Maslov are seen to fall very close to the present dispersion. The

stresses traced using the present model in G/g/G plate at these experimentally tallied points show an easily discernable

rise in the central region of adhesive, as observed by Kundu and Maslov.

The model appears to be useful as a good first approximation to detect voids in adhesive zone of composite structural

elements. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

‘‘. . .Guided waves in plates and rods which were previously mainly of academic interest now play an
important role in such diverse fields as nondestructive evaluation and fiber optic devices. . .’’

B.A. Auld
Even a cursory look at present day literature on wave motion in elastic solids is sufficient to get a feel of

the above remarks (Auld, 1986). The new dimensions the study of elastic wave propagation acquired in its
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applicability in recent years are truly fascinating. Signal processing, acoustic emission, seismology and
ultrasonics are only a sample to mention.

The present paper is concerned with application of elastic wave motion in plates to nondestructive
testing or evaluation of adhesive bond quality in composite bilaminates employing what is well known as
the Lamb wave technique (Viktorov, 1967).

Lamb waves are waves that propagate in a freely vibrating plate. The unique properties of Lamb waves
have made them increasingly attractive for nondestructive testing of bonded structures. It is now accepted
that a large area of the structural element can be inspected using Lamb waves. The sensitivity and efficiency
of adhesive bond inspection using Lamb waves has been the subject of study in recent years in many
laboratories concerned with bond quality inspection. Bar-Cohen, Chimenti, Rokhlin, Mal, Pilarski, Rose
and Achenbach among others made lasting contributions that are widely referred to in this area. A bib-
liography of papers covering various theoretical and practical aspects of Lamb waves is available on in-
ternet at www.NDT.net.

Modern technology employs tailor made composite materials to suit specific performance needs and very
often adhesives are employed in fabricating them. Even in the instance of employing riveting as the major
fastening tool in aerospace technology, we learn that adhesives are also used selectively to arrest propa-
gation of cracks (Dattaguru, 1999).

One of the familiar reasons for bond failure in adhesively joined surfaces is the distributed porosity in the
region of adhesion. If the extent of porosity exceeds an accepted level, the component has to be rejected. In
any technique employed to nondestructively identify or estimate the extent of porosity a good mathematical
model of the pore infested adhesive zone would be of immense help to the practicing NDT engineers. One
of the various NDT tools for inspecting interface imperfections is the Lamb wave/leaky Lamb technique.
The present paper is a continuation of the authors’ attempt at developing a reliable analytical model of the
interface –– whose imperfection is due to a cluster of minute voids in the region of the glue –– to aid LW/
LLW technique. (We use pores and voids synonymously throughout the paper.) A void, in the context of
adhesive bonding is, ‘‘any area that should contain, but does not contain adhesive’’ (Hegemier, 1989).

Coming back to Lamb waves and their utility in NDT of bond quality, these waves have infinitely many
modes. In a given frequency range, however, there are a finite number of them. As they propagate in the
plate medium, their phase velocity is affected by the frequency. Till recently this dispersion of Lamb modes
that is obtained theoretically assuming some or other model for imperfect bond is compared with the
dispersion obtained from experiments. But in recent years the attention is shifted to identifying those modes
that can characterize specific defects like inclusions, harder or softer than the bulk medium (Yang and
Kundu, 1998; Kundu and Maslov, 1997). One of the observations is that those modes that carry higher
stresses can be utilized to identify softer or porous defects while those that carry higher displacements but
lower stresses are used to detect harder inclusions (Kundu and Maslov, 1997). In particular the influence of
interfacial defects on Lamb mode stresses in glass bilaminates was studied by Kundu and Maslov. The
stress patterns for the symmetric and anti-symmetric modes are illustrated and discussed by these authors.

In order to develop a model of the adhesive region with distributed porosity Vasudeva and Govinda Rao
(1991, 1992) and Vasudeva and Sudheer (in press) have employed the theory of linear elastic materials with
voids (LEMV) (Cowin and Nunziato, 1983). Vasudeva and Govinda Rao (1991) used the LEMV model to
describe the adhesive zone to identify porosity in the region of adhesion using Lamb modes. They obtained
Lamb wave dispersion in A1/adhesive/A1 plates that compares closely with the one obtained employing a
general imperfect bond model (Mal et al., 1989). They (Vasudeva and Govinda Rao, 1992) further extended
this work to fiber-reinforced composite bilaminates in which the dispersion spectrum obtained is compared
with the one in perfectly bonded plates. Later Vasudeva and Sudheer (in press) have shown that in the LLW
technique Lamb wave attenuation is a useful parameter in identifying voids in adhesive interface zones.
They inferred this by looking at how the attenuated leaky Lamb mode dispersion differs from that in a
perfectly bonded plate (Dayal and Kinra, 1989) if vacuous imperfections were present. Following Vasudeva
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and Govinda Rao, Paul and Nelson (1996) analyzed the influence of voids in the interface on flexural
vibrations of a bilayered composite hollow piezoelectric cylinder employing the LEMV theory.

Motivated by the findings of Kundu and Maslov (1997) the present work undertakes evaluation of
stresses carried by the first few symmetric and anti-symmetric Lamb modes in a composite glass plate in
order to appreciate the utility of the LEMV model in detecting porosity in the adhesive interface of the
bilaminate. However what we present is not an exhaustive study nor is it quantitative in nature. We would
like to note that the theory of LEMV does not consider either the pore size or how the pores are actually
distributed in the medium. However, it attempts to incorporate the presence of voids at the microlevel ––
voids of no energetic significance –– into the classical continuum theory of linear elastic solids. As Passman
(1984) observed, the LEMV may serve as a model of bodies with no initial porosity but may eventually
develop pores and expand to the point where the pores take up the whole body remaining elastic
throughout. This could be close to the realistic situation in adhesive bonds which may develop pores either
during fabrication or during service of the structural element. Of course, we are not concerned with the
limit case of the whole adhesive coming unstuck but only in some intermediate stage in which pores are
present in the region of adhesion. Reiterating that one of the factors that weakens the bond in composites is
the presence of small distributed voids in the interface zone where the adhesive bonds the adherends, we try
to look at how these voids change the internal stress field in plates relative to those in perfectly bonded
bilaminates. For, observing stress developed can be more conclusive in assessing the presence of weaker or
softer inclusions in the bond region of a bilaminate (Kundu and Maslov, 1997).

The theory is briefly presented in the next section and it is applied to glass/glue/glass (G/g/G) symmetric
sandwich with assumed porosity in the region of the glue. In the section that follows the results are
graphically illustrated and discussed. The paper ends with a few concluding remarks.

2. Theory

We consider a symmetric sandwich plate made of two laminas of material 1, held together by an adhesive
layer of material 2. The adhesive layer of thickness 2tc is called the core and the laminas each of thickness tf

held together by the adhesive are called facings. The material of the facings is a linear homogeneous iso-
tropic solid of density qf . Its Lame constants are denoted by kf , lf . The bond between the two facings is
assumed to be imperfect. The imperfection is due to a distribution of vacuous pores or voids throughout the
region of adhesion. We represent this thin region by a homogeneous LEMV.

We refer the resulting plate to a Cartesian co-ordinate system with the Ox1x2 plate coinciding with
midplane of core. The Ox3 axis is along the plate thickness direction (Fig. 1). The equations of motion in the
facings are the well-known Navier equations for linear homogenous isotropic elastic media

lfr2U f þ ðkf þ lfÞrr � U f ¼ qf €UU f in tc < jx3j < tc þ tf with lf P 0; 3kf þ 2lf P 0 ð1Þ
where U f is displacement vector in the facings.

The bond region jx3j < tc is filled by the adhesive which includes pores. We model this adhesive zone by a
LEMV.

In an LEMV the bulk density (qc) is factored into the product of matrix density (cc) and matrix volume
fraction (mc)

The bulk density qc ¼ adhesive bulk mass

adhesive bulk volume

The bulk density qc ¼ matrix massþmass of voids in adhesive

matrix volume
�matrix volume

bulk volume

R.Y. Vasudeva, G. Sudheer / International Journal of Solids and Structures 39 (2002) 559–569 561



The bulk density qc ¼ ðmatrix densityþ 0Þ �matrix volume fraction

Thus qc ¼ ccmc.
We see that 06 mc 6 1. The case mc ¼ 1 corresponds to a material with no voids whereas the case mc ¼ 0

corresponds to a material with no strength in extension or shear.
A new variable /ðx; tÞ is now defined as

/cðx; tÞ ¼ mcðx; tÞ 	 mcR ð2Þ
The independent kinematic variables in the theory of LEMV are the displacement vector U cðx; tÞ and the

scalar /cðx; tÞ which describes the change in volume fraction (mc) from the reference volume fraction ðmcRÞ.
The scalar field / endows the LEMV with certain properties akin to those known as standard viscoelastic
solids. We know that the adhesives employed in the fabrication of composite laminates are viscoelastic.

The governing equations in core, coupling U cðx; tÞ and /cðx; tÞ are
lcr2U c þ ðkc þ lcÞrr � U c þ br/ ¼ qc €UU c

ar2/c 	 x _//c 	 n/c 	 br � U c ¼ qj €//c in jx3j < tc
ð3Þ

where a, b, x, n and j are hypothetical material constants of LEMV in addition to the usual Lame con-
stants kc, lc. The following thermodynamical relations on these constants exist.

lc P 0; aP 0; n P 0; x P 0

ð3kc þ 2lcÞP 0; ð3kc þ 2lcÞnP 3b2

The displacements and stresses in the facings have well-known mathematical expressions (Viktorov, 1967).
Expressions for the displacement, volume fraction field i.e., the solutions of Eq. (3) and the consequent
stresses are obtained using Helmholtz decomposition (Chandrasekhariah, 1987) of a vector field. For the
sake of self-containedness we detail all these expressions in both the facings and the core.

U f
1 ¼ ic½A1 cosða1x3Þ

�
þ A2Sða1x3Þ� þ b1½ 	 A3Sðb1x3Þ þ A4Cðb1x3Þ�

�
eiðcx1	htÞ ð4Þ

U f
3 ¼ a1½

�
	 A1Sða1x3Þ þ A2Cða1x3Þ� 	 ic½A3Cðb1x3Þ þ A4Sðb1x3Þ�

�
eiðcx1	htÞ ð5Þ

U c
1e ¼ ic½A1

eChðm1x3Þ
�

þ A2
eChðm2x3Þ� þ A3

em0Chðm0x3Þ
�
eiðcx1	htÞ ð6Þ

Fig. 1. G/g/G plate and co-ordinate frame.
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U c
3e ¼ A1

em1Shðm1x3Þ
�

þ A2
em2Shðm2x3Þ 	 icA3

eShðm0x3Þ
�
eiðcx1	htÞ ð7Þ

U c
1b ¼ ic½A1

bShðm1x3Þ
�

þ A2
bShðm2x3Þ� þ A3

bm0Shðm0x3Þ
�
eiðcx1	htÞ ð8Þ

U c
3b ¼ A1

bm1Chðm1x3Þ
�

þ A2
bm2Chðm2x3Þ þ iYA3

bChðm0x3Þ
�
eiðcx1	htÞ ð9Þ

sf31 ¼ lfð2ica1½
�

	 A1Sða1x3Þ þ A2Cða1x3Þ�Þ þ ðc2 	 b2
1Þ A3Cðb1x3Þ
�

þ A4Sðb1x3Þ
��
eiðcx1	htÞ ð10Þ

sf33 ¼ ðk2
�

þ 2lfÞfa2
1½ 	 A1Cða1x3Þ 	 A2Sða1x3Þ� þ icb1½ 	 A3Sðb1x3Þ þ A4Cðb1x3Þ�g

þ kff 	 c2½A1Cða1x3Þ þ A2Sða1x3Þ� þ icb1½ 	 A3Sðb1x3Þ þ A4Cðb1x3Þ�g
�
eiðcx1	htÞ ð11Þ

sc31e ¼ 2qcV c2

2 ic½A1
em1Shðm1x3Þ

n
þ A2

em2Shðm2x3Þ� þ qcV c2

2 ðc2 þ m2
0ÞA3

eShðm0x3Þ
o
eiðcx1	htÞ ð12Þ

sc33e ¼ qcV c2

2 c0½A1
eChðm1x3Þ

n
þ A2

eChðm2x3Þ� 	 2qcV c2

2 icA3
em0Chðm0x3Þ

o
eiðcx1	htÞ ð13Þ

/c
e ¼

qcV c2

1

b

 !
r1A1

eChðm1x3Þ
�

þ r2A2
eChðm2x3Þ

�
eiðcx1	htÞ ð14Þ

/c
b ¼

(
	 qcV c2

1

b

 !
r1A1

bShðm1x3Þ
�

þ r2A2
bShðm2x3Þ

�)
eiðcx1	htÞ ð15Þ

sc31b ¼ 2qcV c2

2 ic½A1
bm1Chðm1x3Þ

n
þ A2

bm2Chðm2x3Þ� þ qcV c2

2 ðc2 þ m2
0ÞA3

bChðm0x3Þ
o
eiðcx1	htÞ ð16Þ

sc33b ¼ qcV c2

2 c0½A1
bShðm1x3Þ

n
þ A2

bShðm2x3Þ� 	 2qcV c2

2 icA3
bm0Shðm0x3Þ

o
eiðcx1	htÞ ð17Þ

The suffixes e and b stand for extensional and bending modes respectively, while f and c are used to denote
field variables in the facings and the core respectively. C, S, Ch, Sh denote the circular and hyperbolic
functions.

There are seven arbitrary constants in the solution appearing in two sets A1, A2, A3, A4, A1
e , A

2
e , A

3
e in the

case of extensional waves and A1, A2, A3, A4, A1
b, A

2
b, A

3
b in the case of bending waves. c is wave number and h

is the frequency. The Lamb wave velocity is given by V ¼ h=c. The different terms used in Eqs. (4)–(17) are
defined as

a2
1 ¼

h2

V f2

1

	 c2; b2
1 ¼

h2

V f2

2

	 c2; V f2

1 ¼ kf þ 2lf

qf
; V f2

2 ¼ lf

qf
; X3 ¼ x3 	 tc

m2
0 ¼ c2 	 h2=V c2

2 ; r1;2 ¼ m2
1;2 	 c2 þ h2=V c2

2

where m2
1, m

2
2 are the roots of the equation

ðc2 	 m2Þ2 	 ½h2=V c2

2 	 ð1=a�Þð1	 ix�h 	 k�h2Þ þ b��ðc2 	 m2Þ 	 ðh2=V c2

2 a�Þð1	 ix�h 	 k�h2Þ ¼ 0

ð18Þ
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where

V c2

1 ¼ kc þ 2lc

qc
; V c2

2 ¼ lc

qc
;

a
n
¼ l22; x� ¼ x=n; k� ¼ qcj

n
; b� ¼ bc

qcaV c
1

; V c2

3 ¼ a�=k�;

V c2

4 ¼ 4a2=l20x
2

Further the length parameters l0, l1 and l2 associated with linear elastic materials with voids are defined as

l0 ¼ l1l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 	 l22H

q

ð19aÞ

where

H ¼ b=ðkc þ 2lcÞ; l1 ¼
ffiffiffiffiffiffiffiffi
a=b

p
; l2 ¼

ffiffiffiffiffiffiffiffi
a=n

p
ð19bÞ

Further the coupling constant N is defined as

N ¼ b2

nðkc þ 2lcÞ ¼
l22H
l21

Vanishing of N decouples the two kinematical variables namely the displacement and the void volume
fraction.

The displacements (4)–(9), stresses (10)–(13) and (16)–(17) and void volume fraction /c (14)–(15) are
subject to the following boundary and interface conditions pertaining to free vibrations of sandwich plate.

ufi ¼ uc
j on jx3j ¼ tc i; j ¼ 1; 3 ð20aÞ

sf3j ¼ sc3j on jx3j ¼ tc j ¼ 1; 3 ð20bÞ

/c; x3 ¼ 0 on jx3j ¼ tc ð20cÞ

sc3j ¼ 0 on jx3j ¼ tc þ tf j ¼ 1; 3 ð20dÞ

The Eqs. (4)–(17) are subject to conditions (20). The characteristic equation of the present Lamb wave
boundary value problem is obtained as the vanishing of the determinants of the matrices Eij and Bij sep-
arately for the extensional and bending waves in the plate. The frequency equation for the symmetric and
anti-symmetric Lamb modes in G/g/G plate is given by

jEijj ¼ 0 ð21Þ
and

jBijj ¼ 0 ð22Þ
We note down Eij and Bij in Appendix A.

3. Numerical results and discussion

The concern of the present paper is to look at the possible utility of the LEMV model developed earlier
(Vasudeva and Govinda Rao, 1991, 1992; Vasudeva and Sudheer, in press) in NDT of porosity in the
adhesive zone. The model is evaluated in terms of stresses carried by the first few Lamb modes as explained
in the introductory section. The frequency equations (21) and (22) for the symmetric and anti-symmetric
Lamb modes is for any symmetric bilaminate with classical isotropic facings and LEMV core with arbitrary
facing and core thicknesses. We note again that the theory of LEMV is an extension of the classical theory

564 R.Y. Vasudeva, G. Sudheer / International Journal of Solids and Structures 39 (2002) 559–569



of elasticity to include the mechanical effects of distributed small voids in a solid medium. There are four
velocities ðV c

1 , V
c
2 , V

c
3 , V

c
4 Þ in the LEMV medium. V c

1 , V
c
2 are the familiar dilatational and distortional wave

velocities while the velocities V c
3 , V

c
4 are velocities of a wave carrying a change in the volume fraction field at

high and low frequencies (Puri and Cowin, 1985). In this paper, for the purpose of comparison, a G/g/G
plate is chosen in which the stresses for S1, A1, A2 modes are available in Kundu and Maslov (1997). In the
G/g/G plate the mechanical behavior of the facing glass plate is described by the classical theory of elasticity
while the pore infested glue region is modeled by an LEMV. The physical–mechanical properties of G/g/G
plate are taken in the following manner. The two velocities in the glass are taken from Kundu and Maslov
(1997). In the glue region modeled by an LEMV the length parameter ðl2Þ is fixed at 0.005 mm and the
coupling constant (N ) is taken to be 0.01 as in Vasudeva and Govinda Rao (1991, 1992) and Vasudeva and
Sudheer (in press). The real world glue velocities are taken for V c

1 , V
c
2 as in Kundu and Maslov (1997). Since

the glue region with its pores is very thin we allowed the glass properties to dominate and let V c
3 , V

c
4 assume

the wave velocities in glass. Different choices of values for V c
3 , V

c
4 along with N and l2 are possible within the

realm of the theory of LEMV (Puri and Cowin, 1985). Such different choices would physically mean
qualitative variation in the porosity of the adhesive zone. We confine only for the set of values presented in
Table 1.

First, the dispersion of Lamb modes obtained by Kundu and Maslov (1997) is compared with the
dispersion of the present model with material constants taken as shown in Table 1. Kundu and Maslov
(1997) introduced a scratch in the interface and conducted experiments employing L-scan. The scratch
which can be considered as a small void in the interface was not mathematically modeled by Kundu and
Maslov i.e., the boundary and interface conditions at the scratch are not theoretically taken care of by them
(Kundu, 2000). Experimental results with scratch were however shown. The closeness of the present dis-
persion spectrum presented in Fig. 2(b) to that given by Kundu and Maslov (1997) as given in Fig. 2(a) is
evident. The broader inference of these authors (Kundu and Maslov, 1997) is that voids release stresses and
the modes which carry higher stresses can be employed in detecting the presence of softer materials/pores in
the interface. We present in Figs. 3–5 the shear and normal stresses for A1, A2 and S1 modes. Along the
horizontal we have the normalized depth of plate and along the vertical we have the absolute value of stress.
The plate thickness has been normalized as in Kundu and Maslov (1997) to facilitate comparison. Hence 0–
1 along the horizontal corresponds to 0–1.855 mm. In these plots the region of adhesion i.e., the core of the
sandwich lies between 0.49596 and 0.50404 along the horizontal. In the figures we denote the shear and
normal stresses by S13 and S33 respectively. Fig. 3(a) and (b) shows S13 and S33 for A1 mode. Fig. 4(a) and (b)
shows S13 and S33 for A2 mode and Fig. 5(a) and (b) shows S13 and S33 for S1 mode. These are presented at
the phase velocity points at which Kundu and Maslov’s theory and experiment agree on the dispersion
diagram (Fig. 8 of Kundu and Maslov (1997)). For each mode we present three stress versus depth curves
for the experimentally tallied phase velocities (pv’s) 5.1, 4.58 and 4.16 km/s corresponding respectively to
the three different incident angles 17�, 19� and 21�. For anti-symmetric modes the normal stress is zero at the
central plane of the glue but at the interface plane it has significant nonzero value. For the same modes
the shear stress at the central plane of the glue is more than that at the interface. As we allowed the glass
properties to dominate in the adhesive zone, it is as well as a scratch or void is present at the central plane of

Table 1

Material parameters of facings and core

Layer material Thickness (mm) Density (g/cm3) Velocities (mm/ls)

V1 V2 V3 V4

Glass 0.92 2.25 5.66 3.4 – –

Adhesive (LEMV) 0.015 1.25 2.8 1.2 5.66 3.4

In core: N ¼ 0:01 and l2 ¼ 0.005 mm.
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glue region. Voids release stresses. Therefore the modes for which the stresses are large––if they can be
generated in the lab––can be utilized to detect voids. From the figures it can be reliably said that the A1

mode can be employed to detect voids as the shear stress is high at the central glue region as in the cor-
responding case of Kundu and Maslov (1997) with a scratch in the glued zone. A thick more prominent line
is seen in the shear stress for S1 mode in the adhesive region. This is because in the extremely thin region of
glue the shear stress is zero at the central plane but rises sharply to a significant nonzero value in the in-
terface. Thus we see that S1 mode stress records a rise as in Kundu and Maslov (1997). Therefore S1 mode

Fig. 3. Variations in (a) S13 for A1 mode and (b) S33 for A1 mode.

Fig. 2. (a) Dispersion curves in G/g/G plate (after Kundu and Maslov (1997)) circles ( ) are experimental data points. (b) Dispersion

curves of present model.
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too can be utilized to detect porosity. Therefore the LEMV model seems to serve reasonably well in NDT of
bondline porosity.

4. Conclusions

Various parameters such as displacements, velocities, energies and stresses carried by Lamb modes in
layered plates and cylinders are presently under investigation by researchers interested in employing Lamb
modes in NDT of adhesive bonds. The present work is one in such a direction. It attempts to identify the
possible use of a theoretical model known as LEMV model in NDT of bilaminates via stress evaluation.
The dispersion spectrum and the stresses carried by the first few Lamb modes in a G/g/G plate with
assumed porosity in the glue region is presented. The physical–mechanical properties of the plate are

Fig. 4. Variations in (a) S13 for A2 mode and (b) S33 for A2 mode.

Fig. 5. Variations in (a) S13 for S1 mode and (b) S33 for S1 mode.
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borrowed from Kundu and Maslov (1997). The dispersion of the Lamb modes in the frequency range 0–10
MHz with assumed values of the hypothetical parameters of the LEMV are given and it is quite close to the
one obtained by Kundu and Maslov (1997). Modeling the adhesive zone –– with an assumed presence of
voids –– by the mathematical theory of LEMV we trace the stresses carried by A1, S1 and A2 modes all
along the depth of the bilaminate for various frequency–phase velocity pairs and present them only at those
frequency–phase velocity points at which Kundu and Maslov’s theory and experiment agree on the dis-
persion diagram. Though still more work is to be carried out to analyze factors like time of flight and
energies carried by the modes, the qualitative results of this limited comparison seem to suggest that A1 and
S1 modes can be reliably employed to detect voids. The authors believe that this model will interest workers
in NDT.

Appendix A

The matrix Eij is

	p2S1 p2C1 GC2 GC2 0 0 0
GC1 GS1 q2S2 	q2C2 0 0 0
0 p2 G 0 	Rgm1Sh1 	Rgm2Sh2 RmSh0

GS2 0 0 	q2 	R0Ch1 	R0Ch2 Rgm0Ch0

ic 0 0 b1 	icCh1 	icCh2 	m0Ch0

0 a1 	ic 0 	m1Sh1 	m2Sh2 icSh0

0 0 0 0 r1m1Sh1 r2m2Sh2 0

2
666666664

3
777777775

The elements of the matrix Bij which are different from those of the elements of Eij are

B35 ¼ 	Rgm1Ch1; B36 ¼ 	Rgm2Ch2; B37 ¼ 	RmCh0

B45 ¼ 	R0Sh1; B46 ¼ 	R0Sh2; B47 ¼ Rgm0Sh0

B55 ¼ 	icSh1; B56 ¼ 	icSh2; B57 ¼ 	m0Sh0

B65 ¼ 	m1Ch1; B66 ¼ 	m2Ch2; B67 ¼ icCh0

B75 ¼ r1m1Ch1; B76 ¼ r2m2Ch2

where

R0 ¼ ðlc=lfÞc0; G ¼ ðc2 	 b2
1Þ; p2 ¼ 2ica1; q2 ¼ 2icb1

Sh1 ¼ Shðm1tcÞ; Sh2 ¼ Shðm2tcÞ; Sh0 ¼ Shðm0tcÞ

Ch1 ¼ Chðm1tcÞ; Ch2 ¼ Chðm2tcÞ; Ch0 ¼ Chðm0tcÞ

C1 ¼ Cða1tfÞ; C2 ¼ Cðb1t
fÞ; S1 ¼ Sða1tfÞ; S2 ¼ Sðb1t

fÞ
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